软件和异构计算引领行业变革
2022.11.7
广东吉洋视觉专注AOI视觉检测设备 ( 吉洋视觉AOI ; 底部AOI ;上下同拍AOI ;DIP波峰焊AOI ;在线式上下同拍双轨AOI )
随着摩尔定律逐渐走向饱和,软件(包括狭义的软件定义芯片和广义的软件-芯片协同优化)和异构计算将会引领高性能计算芯片继续演进。从行业上来看,除了上文讨论的Intel之外,AMD和Nvidia在相关方向上都有重要的布局。 AMD在异构计算和软件方面的布局主要包括对于Xilinx的收购和在高性能计算GPU(CDNA系列)领域的软件生态投资。收购FPGA领域的领导者Xilinx确保了AMD有机会能把FPGA技术和处理器业务整合在一起,而FPGA正是异构计算的一个重要范式之一。在软件方面,AMD继续大力投资CDNA系列GPU和相关软件生态(包括与CUDA竞争的ROCM生态),预计在未来5-10年内会把CDNA系列GPU生态打造成和Nvidia生态有一较高下的实力。 Nvidia在软件生态方面拥有护城河极高的CUDA,我们认为在可预计的将来该软件生态将会成为Nvidia继续大力布局的领域同时也将是Nvidia最大的竞争力来源之一。随着AMD和Intel进一步在GPU和AI加速卡领域的投资,该领域的竞争会变得愈加激烈,软件生态也将会成为决定市场竞争力最关键的核心之一。在异构计算领域,我们也看到了Nvidia在GPU设计中越来越针对相关算法做专用加速器,例如针对整数计算的Tensor Core,以及在最新Hopper系列GPU中加入的Transformer Engine IP。另外一个不容小觑的方向是Nvidia自动驾驶芯片,在Nvidia公布的Orin等自动驾驶芯片中,我们可以看到它集成了多种针对专门应用的加速器,可谓是异构计算的典范。 我们预计,整个高性能计算芯片行业都会继续大力布局软件和异构计算,而在某一个时间点,软件和异构计算将会慢慢融合,例如针对特定算法应用优化的异构计算IP(软件芯片协同优化),同时通过软件定义芯片的方式来实现潜在的新商业模式。整个行业将会看到越来越多在软件方面的投资和收购(例如Intel不久之前对于codeplay的收购),同时整个芯片设计范式将会看到越来越多软件和芯片设计的协同优化。郑重声明:1、部分内容来源于网络,本文版权归原作者所有,转载文章仅为传播更多信息之目的。2、本文仅供学术交流,非商用。如果某部分不小心侵犯了大家的利益,请联系删除。