吉洋视觉

专注机器视觉检测全自动化服务商
4行业新闻
您的位置: 首页 ->  行业新闻 -> 机器视觉(AOI)之混合学习
机器视觉(AOI)之混合学习
这种范式试图跨越监督学习和非监督学习之间的界限。由于有标签数据缺乏且成本高,所以常常在业务上下文中使用。从本质上说,混合学习是对下面这个问题的回答:
如何使用监督方法解决非监督问题?
首先,半监督学习在机器学习领域取得了良好的进展,因为它只需要很少的有标签数据就能够在监督问题上有非常好的表现。例如,一个设计良好的半监督式 GAN(生成式对抗网络)只需要 25 个训练样本,就能在 MNIST 数据集上获得了超过 90% 的准确率。
半监督学习是针对有大量无监督数据和少量有监督数据的数据集而设计的。传统上,监督学习模型只在一部分数据上进行训练,无监督模型则在另一部分数据上进行训练,而半监督模型则可以将有标签数据与从无标签数据中提取的见解结合起来。
半监督 GAN(简称 SGAN)是对 标准生成式对抗网络模型 的改写。判别器输出 0/1 表示图像是否生成,它也输出项的类别(多输出学习)。
这是基于这样一种想法,即通过判别器学习区分真实的和生成的图像,它能够学习它们的结构而不需要具体的标签。通过少量标签数据的额外增强,半监督模型就可以在少量监督数据的情况下实现最高的性能。
要了解关于 SGAN 和半监督学习的更多内容,请查看这里:
https://towardsdatascience.com/supervised-learning-but-a-lot-better-semi-supervised-learning-a42dff534781
GAN 还参与了混合学习的另一个领域——自监督 学习,在这种学习中,非监督问题被明确地定义为监督问题。GAN 通过引入生成器人为地创建监督数据;创建标签来识别真实 / 生成的图像。在无监督的前提下,创建了一个有监督的任务。
或者,考虑使用 编码器 - 解码器压缩模型。在最简单的形式中,它们是中间有少量节点(表示某种瓶颈压缩形式)的神经网络。两端分别是编码器和解码器。
网络被训练成产生与输入向量相同的输出(从无监督数据人为地创建监督任务)。由于故意在中间设置了瓶颈,所以网络不会被动地传递信息;相反,它必须找到最好的方法将输入内容保存到一个小的单元中,这样,解码器就可以再次合理地对它解码。
训练完成后,将编码器和解码器分开,用于压缩或编码数据的接收端,以极小的形式传输信息,而又几乎不丢失数据。它们还可以用来降低数据的维数。
另一个例子,考虑一个大型的文本集(可能是来自数字平台的评论)。通过一些聚类或流形学习(manifold learning)方法,我们可以为文本集生成聚类标签,然后用它们作为标签(如果聚类做得好的话)。
在对每个类进行解释之后(例如,类 A 表示对产品的抱怨,类 B 表示积极的反馈,等等),可以使用像 BERT 这样的深层 NLP 架构将新文本分类到这些类中,所有这些都是使用了完全未标记的数据,并将人的参与降至最低。

这又是一个将非监督任务转换为监督任务的有趣应用。在一个绝大多数数据都是非监督数据的时代,通过混合学习,在监督学习和非监督学习之间创造性地架起一座桥梁,具有巨大的价值和潜力。

郑重声明:
1、部分内容来源于网络,本文版权归原作者所有,转载文章仅为传播更多信息之目的。
2、本文仅供学术交流,非商用。如果某部分不小心侵犯了大家的利益,请联系删除。

咨询

电话

服务热线

400-0769-728

电话

0769-33392399

手机站

二维码

吉洋手机站

邮箱

联系邮箱

[email protected]