机器视觉(AOI)之传统 CV 技术与深度学习的融合
传统 CV 技术和深度学习方法之间存在明确的权衡。经典 CV 算法成熟、透明,且为性能和能效进行过优化;深度学习提供更好的准确率和通用性,但消耗的计算资源也更大。
混合方法结合传统 CV 技术和深度学习,兼具这两种方法的优点。它们尤其适用于需要快速实现的高性能系统。
机器学习度量和深度网络的混合已经非常流行,因为这可以生成更好的模型。混合视觉处理实现能够带来性能优势,且将乘积累加运算减少到深度学习方法的 130-1000 分之一,帧率相比深度学习方法有 10 倍提升。此外,混合方法使用的内存带宽仅为深度学习方法的一半,消耗的 CPU 资源也少得多。
当算法和神经网络推断要在边缘设备上运行时,其延迟、成本、云存储和处理要求比基于云的实现低。边缘计算可以避免网络传输敏感或可确认数据,因此具备更强的隐私性和安全性。
结合了传统 CV 和深度学习的混合方法充分利用边缘设备上可获取的异质计算能力。异质计算架构包含 CPU、微控制器协同处理器、数字信号处理器(DSP)、现场可编程逻辑门阵列(FPGA)和 AI 加速设备,通过将不同工作负载分配给最高效的计算引擎来降低能耗。测试实现证明,在 DSP 和 CPU 上分别执行深度学习推断时,前者的目标检测延迟是后者的十分之一。
多种混合方法证明了其在边缘应用上的优势。使用混合方法能够高效地整合来自边缘节点传感器的数据。
郑重声明:
1、部分内容来源于网络,本文版权归原作者所有,转载文章仅为传播更多信息之目的。
2、本文仅供学术交流,非商用。如果某部分不小心侵犯了大家的利益,请联系删除。